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ARTICLE INFO ABSTRACT
Am'd? history: Gaucher disease (GD) is a rare lysosomal storage disorder that is divided into three subtypes based on presenta-
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and counseling. Yet, patients with neuronopathic forms of GD, types 2 and 3, often present at young ages and
can have overlapping phenotypes. It has been shown that new technologies employing artificial intelligence
and facial recognition software can assist with dysmorphology assessments. Though classically not associated
nor previously described with a dysmorphic facial phenotype, this study investigated whether a facial recognition
platform could distinguish between photos of patients with GD2 and GD3 and discriminate between them and
photos of healthy controls. Each cohort included over 100 photos. A cross validation scheme including a series
of binary comparisons between groups was used. Outputs included a composite photo of each cohort and either
a receiver operating characteristic curve or a confusion matrix. Binary comparisons showed that the software
could correctly group photos at least 89% of the time. Multiclass comparison between GD2, GD3, and healthy con-
trols demonstrated a mean accuracy of 76.6%, compared to a 37.7% chance for random comparison. Both GD2 and
GD3 have now been added to the facial recognition platform as established syndromes that can be identified by
the algorithm. These results suggest that facial recognition and artificial intelligence, though no substitute for
other diagnostic methods, may aid in the recognition of neuronopathic GD. The algorithm, in concert with
other clinical features, also appears to distinguish between young patients with GD2 and GD3, suggesting that
this tool can help facilitate earlier implementation of appropriate management.
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1. Introduction empower patients and their families, while also informing appropriate
medical care and long-term support [5-7]. Therefore, minimizing the
time between initial disease recognition and accurate diagnosis is a

common goal held by patients and healthcare providers alike.

Individuals and families impacted by rare diseases are all too familiar
with the phrase “diagnostic odyssey”, the time between initial symptom

manifestation and a final diagnosis. During this period, patients are sub-
jected to tests and assessments that often require visits to different
medical facilities for evaluations conducted by multiple physicians
over an average period of five years [1,2]. A lack of diagnosis following
potentially invasive assessments can lead to feelings of frustration, un-
certainty, and hopelessness [3,4]. Conversely, receiving a diagnosis can
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Gaucher disease (GD) is one such rare disease that may include a
turbulent journey to diagnosis. GD is an autosomal recessively inherited
disorder caused by biallelic pathogenic variants in GBA1 which encodes
for the lysosomal glycoside hydrolase, glucocerebrosidase (GCase, EC
3.2.1.45). Deficient or altered GCase results in a buildup of its substrates,
glucosylceramide and other glycosphingolipids, in lysosomes of
macrophages and other cells [8,9]. Disease manifestations include
hepatosplenomegaly, thrombocytopenia, anemia, infiltrative lung dis-
ease, polyclonal and monoclonal gammopathy, avascular osteonecrosis,
and osteopenia [10-13]. Specific neurological phenotypes encountered
in neuronopathic forms of GD include slowed horizontal saccades, pro-
gressive myoclonic epilepsy, strabismus, failure-to-thrive, behavioral
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abnormalities, swallow dysfunction and developmental delay or pro-
gressive deterioration [10,12,14-18]. The three types of GD are catego-
rized based on the presence and severity of neurological
manifestations with Gaucher disease type 1 being the non-
neuronopathic form (GD1, OMIM 230800). Gaucher disease type 2 is
considered the acute neuronopathic form (GD2, OMIM 230900) and
Gaucher type 3 the chronic neuronopathic form (GD3, OMIM 231000).
All types of GD may present in childhood, but GD2 manifests exclusively
prenatally, perinatally or during the first months of life, and GD3 pre-
dominately manifests in infancy or early childhood [19,20]. There is
also a continuum of presentations between GD2 and GD3 [21]. Diagnos-
ing GD can be achieved pre-clinically via newborn screening, carrier
screening, and other prenatal testing methods. Once the diagnosis is
considered upon symptom presentation, GD can be confirmed molecu-
larly by sequencing GBA1, or by measuring GCase enzymatic activity.
The type of GD diagnosed is based on phenotypic presentation. Despite
these available diagnostic measures, patients with GD still often un-
dergo a lengthy diagnostic odyssey, including invasive tissue biopsies,
because of limited physician awareness, the presentation of nonspecific
symptoms and the rarity of the disease.

Advancements in genomic and computational technologies have in-
creased the number of diagnostic tools available to clinicians. Software
including artificial intelligence (Al) run by deep convolutional neuronal,
networks (DCNNs), have standardized the way that images can be ana-
lyzed. Dysmorphology, the study assessing variation of physical fea-
tures, has long been an integral part of recognizing rare inherited
diseases [22,23]. With the aid of novel facial recognition tools,
dysmorphology may be evaluated by utilizing DCNNs to analyze patient
photos [24]. One such tool, Face2Gene (FDNA Inc., USA), is powered by
an algorithm called DeepGestalt that has been trained to recognize over
300 syndromes including Down, Angelman, Noonan, and Coffin-Lowry
syndromes as well as certain inborn errors of metabolism [25-30]. Clini-
cians upload a frontal facial image of a patient for image analysis and a
ranked list of 30 suggested syndromes is generated. Despite prior at-
tempts to train the algorithm with diverse images of patients with GD,
it was not a syndrome previously recognized by the algorithm. While
this might suggest that there is no perceptible facial phenotype GD asso-
ciated with patients with, these algorithm trainings were conducted
using a small number of photos that included patients with all three
GD types.

Distinguishing clinically between GD2 and GD3 may be challenging,
especially in young patients. Yet, recommended treatment regimens
and familial support for patients with GD2 are very different from
patients with GD3, highlighting the importance of a swift differentiation
between Gaucher types [31]. In recent years, both physicians who treat
patients with GD and family members of patients with GD2 and GD3
have observed that some unrelated patients seem to share certain facial
features [32]. In light of this anecdotal evidence, this study aims to ex-
plore whether facial recognition algorithms identify a facial phenotype
unique to patients with GD2 or GD3, with the hope that this technology
may help shorten the time to accurate diagnosis.

2. Methods
2.1. Photo collection

Publicly available images were collected and uploaded to the HIPAA
compliant Face2Gene platform. Image sources included parents' blogs,
obituaries, and the Children's Gaucher Research Fund newsletters,
among others (Table 1). The diagnostic criteria used to discern GD2
from GD3 was as recently described [18].

To assess whether there was a shared facial phenotype among sub-
jects with GD, we compared photos of subjects with neuronopathic
GD to age, sex, and ethnicity-matched controls. Controls were facial
photos of individuals who did not have GD, nor any other known ge-
netic condition.
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Table 1
Sources of collected photos of subjects with Gaucher disease.

Source Information Unique GD2 Unique GD3
Subjects Obtained Subjects Obtained

from Source (n) from Source (n)

Paper published in an academic journal* 3 6
Parent or other family member's blog* 3 1
Facebook group 2 0
Obituary 3 0
Children's Gaucher Research Fund 20 6
Presentation 1 4
YouTube video 4 7
Patients seen by the investigators and 10 31

photographed with informed consent
Gauchers Association UK pamphlet 3
Other media outlet**

- 0

* For the GD2 cohort, there was overlap in photo sources for some individuals among
the categories marked by the asterisk.

*# Other media outlets include a hospital website, parent support networks, and a
GoFundMe campaign.

2.2. Cohort demographics

We collected 103 photos of 47 different patients with GD2 and 143
photos of 86 different patients with GD3. For GD2, the maximum num-
ber of photos per subject was 9, and the average number of photos per
individual was 2.19. For GD3, these numbers were 17 and 1.66, respec-
tively. The GD2 cohort had more female individuals and photos than
males, while the GD3 cohort had more male individuals than females
but fewer photos of males (Table 2). Both cohorts were majority Cauca-
sian, and the GD3 cohort was more ethnically diverse than the GD2 co-
hort (Fig. 1). We also conducted a pilot evaluation using 133 photos of
48 individuals with GD1 (Supplementary Table 1).

2.3. Control cohort demographics

The control cohorts were age, sex, and ethnicity-matched based on
four ethnic categories: Caucasian, Asian, Latin American, and African.
Photos of individuals belonging to an ethnic group not represented in
the list were assigned to one of the four categories (Table 3). Photos of
subjects who identify as Asian - East, Asian - South, and Asian - South-
east were classified as “Asian”. Photos of subjects who identify as
African American were classified as “African”, and photos of Latinx indi-
viduals were classified as “Latin American”. Photos of subjects who
identify as Asian - West/Middle Eastern were designated as “Caucasian”
as prior internal studies showed no ethnic bias for the algorithm be-
tween these two ethnicities and, the number of Middle Eastern healthy
controls in the Face2Gene database was limited.

2.4. Face2Gene analysis

Each photo was uploaded as an individual case in the Clinic applica-
tion of Face2Gene. Demographic information including age, sex, and
ethnicity for each individual was filled out accordingly to allow for
matched control groups. Information about GD-related manifestations
were also annotated, and the desired cohorts created.

Every individual photo undergoes analysis as described by Gurovich
et al. [25]. Once the face and facial landmarks are detected, DCCNs nor-
malize and crop the face into scaled regions converted to grayscale. The
software then analyzes the regions and predicts the probability for each
syndrome it has been trained to recognize, resulting in a ranked list of
inherited conditions. The Gaucher photos generated lists of suggested
syndromes other than GD, as DeepGestalt was not previously trained
to recognize GD.

A minimum of two cohorts, each with at least ten photos, is required
when analyzing groups of photos. The comparison and separation qual-
ity between all cohorts was evaluated by measuring the Area Under the



ARTICLE IN PRESS

E. Daykin, N. Fleischer, M. Abdelwahab et al.

A
GD2 COHORT - SUBJECTS

m Caucasian m Asian - East
m Asian - West/Middle Eastern m Arab
m Latinx m African

GD3 COHORT - SUBJECTS

m Caucasian m Asian - East

m Asian - South m Asian - Southeast
m Asian - West/Middle Eastern m Latinx

m African m African American

Molecular Genetics and Metabolism xxXx (XXxX) XXX

B
GD2 COHORT - PHOTOS

m Caucasian m Asian - East
m Asian - West/Middle Eastern m Arab
m Latinx m African

D
GD3 COHORT - PHOTOS

m Caucasian m Asian - East

m Asian - South m Asian - Southeast
m Asian - West/Middle Eastern m Latinx

m African m African American

Fig. 1. Ethnic breakdowns of the GD2 and GD3 cohorts. A) Percentages of patients with GD2 who identify with a given ethnicity. B) Percentages represent the number of photos from
patients belonging to a given ethnicity in the GD2 cohort. C) Percentages of patients with GD3 who identify with a given ethnicity. D) Percentages represent the number of photos

belonging to a given ethnicity in the GD3 cohort.

Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. To
estimate the statistical power of DeepGestalt in distinguishing patients
with GD2 from patients with GD3 and from unaffected controls, a

Table 2
Composition of GD2 and GD3 cohorts.
GD2 GD3
Total number of patients 47 86
Total number of photos 103 143

Maximum number of photos (individuals with this 9 (n = 3)
number of photos)
Average number of photos per individual 2.19 1.66

17(n=1)

Number of female subjects (%) 25 (53%) 41 (48%)
Number of female photos (%) 65 (63%) 81 (57%)
Number of male subjects (%) 22 (47%) 45 (52%)
Number of male photos (%) 38 (37%) 62 (43%)
Age range 4 days 1 month
—10 years —30 years

cross validation scheme was used, including a series of binary compar-
isons between all groups. For these binary comparisons, the data was
split randomly multiple times into training sets and test sets. Each set
contained half of the cohort, and this random process was repeated 10
times. Outputs included a composite photo of each cohort, the distribu-
tion of clinical features based on the collected phenotypic data, and ei-
ther a binary or multiclass comparison, depending on the number of
cohorts analyzed within the project.

Table 3
Ethnic breakdown of the control photos.
Controls for GD2 Cohort Controls for GD3 Cohort
Caucasian (%) 79 (77%) 100 (70%)
Asian (%) 14 (13%) 31 (22%)
Latin American (%) 9 (9%) 4 (3%)
African (%) 1(1%) 8 (5%)
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3. Results
3.1. Binary comparisons

Overall, binary comparisons assessed how well DeepGestalt was able
to assign photos to the correct group. If there was no overlap between
the true positive group and the true negative group, or the disease
group and the healthy group, this would result in an AUC of 1. Therefore,
an AUC of 1 means that there is likely a 100% chance that the algorithm
will be able to distinguish between the disease and control groups. The
most distinct separations in the binary comparisons analyzed were the
GD2 cohort vs controls, the GD3 cohort vs controls, and the GD2 cohort
vs the GD3 cohort (Fig. 2). The AUC was highest when comparing the
GD2 versus the control cohort and lowest when comparing the GD3 ver-
sus the control cohort. All the AUC's were >0.89 and p-values <0.0001.

Other binary comparisons performed were between subsets of
our GD2 and GD3 cohorts. To reflect the diversity of included pa-
tients with GD, we investigated the performance of DeepGestalt
when analyzing patients of different ages and ethnicities. The effect
of age was examined specifically in the GD3 cohort, as the GD2 co-
hort had a narrower range with only four individuals living more
than three years (Fig. 3). The effect of patient ethnicity was
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examined in both the GD2 and GD3 cohorts, but could only be eval-
uated in the East Asian and Middle Eastern subsets since the mini-
mum cohort size required was ten (Fig. 4).

3.2. Multiclass comparisons

It was also possible to assess the algorithm's ability to correctly as-
sign photos to more than two groups. To test DeepGestalt's multiclass
comparison performance with our GD cohorts we added one control co-
hort consisting of 143 photos, some of which were used in evaluating
the original GD2 and GD3 cohorts. Overall, the mean accuracy was
found to be 76.6%, which was much higher than the 37.7% random
chance for comparison (Fig. 5). Looking at each of the three groups indi-
vidually, the control group had the highest true positive rate (83%),
followed by GD2 (80%), and GD3 (67%).

4. Discussion

To our knowledge, this is the first description of the use of
DeepGestalt or any other facial recognition software with defined co-
horts of patients with GD. We collected over 100 GD2 photos as well
as over 100 GD3 photos. The GD2 cohort was more homogenous in
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Fig. 2. Binary comparisons. (A) The GD2 cohort and its age, sex, and ethnicity-matched controls. (B) The GD3 cohort and its age, sex, and ethnicity-matched healthy controls. (C) The GD2

and GD3 cohorts.
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Fig. 3. Binary comparisons of subsets of the GD3 cohort categorized by age. (A) Binary comparison of photos of patients with GD3 < age 5 years (n = 59) compared to those > age 5 (n =
76). (B) Binary comparison of the same photos of patients with GD3 < age 5 compared to age, sex, and ethnicity-matched control photos. (C) Binary comparison of the same photos of
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Fig. 4. Binary comparisons of subsets of each cohort categorized by ethnicity. (A) Binary comparison of East Asian GD2 photos (n = 14) compared to age, sex, and ethnicity-matched con-
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parison of Middle Eastern GD3 photos (n = 46) compared to Caucasian GD3 photos (n = 46).
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TYPE 2 0.18
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Standard Deviation: 3.45%
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Predicted

TYPE2 CONTROLS GD3

0'02 “

Random Chance for Comparison: 37.24%

Fig. 5. A confusion matrix of our multiclass comparison of the GD3 (n = 143), GD2 (n = 103), and control cohort (n = 143). Diagonal green boxes are the true positive rates. White boxes are
false positive and false negative rates. Mean accuracy, standard deviation, and random chance for comparison are listed below. The control photos collected for the GD3 group were used, as
their age range spanned that of both the GD2 and GD3 cohort. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

terms of age and ethnicity compared to the GD3 cohort, which may ex-
plain the generally lower AUC values seen when comparing the GD3 co-
hort to healthy controls. The binary comparisons of our GD2 and GD3
cohorts compared to controls, as well as GD2 versus GD3 resulted in
AUC values above 0.89. When we tested the algorithm in a multiclass
setting for the two GD cohorts and a control cohort, its mean accuracy
was 76.6% as compared to the random chance of 37.7%. Therefore, this
study demonstrates the potential clinical utility of automated image
recognition platforms in assisting with the diagnosis of GD2 or GD3;
in fact, even with the limited number of photos submitted to Face2Gene,
DeepGestalt was trained to recognize neuronopathic GD as a defined
syndrome and both GD2 and GD3 will become available in Face2Gene
Clinic as syndromes recognized by facial analysis.

This study included a pilot comparison of patients with GD1.
However, patients with GD1 are extremely diverse with an age
range from infancy to old age, and there is little clinical indication
that such patients have a specific associated facial phenotype. Our
pilot analysis of 133 photos of 48 individuals with GD1 ranging in
age from 2 to 75 years demonstrated that unlike GD2 and GD3,
GD1 did not pass the statistical threshold to allow it to be included
as one of the syndromes identified by DeepGestalt. A larger collec-
tion of photos of infants and young children would be needed to
conduct more definitive comparisons between GD1 and the
neuronopathic forms of GD. Furthermore, additional photos of pa-
tients from underrepresented ethnic groups would be necessary
to determine DeepGestalt's predictive power in these different
groups. The present study did not include sufficient images of
non-Caucasian patients for meaningful comparisons across ethnic
groups. As the technology evolves and more photos are collected,
the applications of this software may expand, ultimately helping
to shorten the diagnostic odyssey for patients with GD and facilitat-
ing earlier appropriate management plans.
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